Interplay of interactions and disorder It electrons propagate ballytically: Typical interaction region ~ 1/k= That's why in $\frac{1}{t_T} \sim \frac{T^2}{\hbar \, \xi_F}$ we have ξ_F in the denominator! It strongly charges if there is electron diffusion: In general, $t \neq t \uparrow t_{e-e}$ Strong diffusion creates conditions for interterence between different electrons. How does interterence happen?

Electrons pick up

phases ~e to

typical energy

difference between 2

electrons: |E; - E; |~T After time $t_{ee} - \frac{\hbar}{T}$ wherence between different electrons is lost If electrony more diffusively, this corresponds to the distance Lee $^{-l}\sqrt{\frac{tee}{t}}$ $\sim V_{F} T \left(\frac{\hbar}{TT}\right)^{\frac{1}{2}} \sim \left(\frac{V_{F}^{2} \tau \hbar}{T}\right)^{\frac{1}{2}} \sim \left(\frac{\hbar D}{T}\right)^{\frac{1}{2}}$ Lee $\sim (\frac{t_0}{T})^{\frac{1}{2}}$ is similar to the dephasing length L_{φ} that we had in single-particle problemy Effective size of the interaction region = Lee The characteristic momentum transfer $q \sim \frac{1}{Lee}$ $\frac{1}{L} \propto Lee - collision trequency$

L & Lee - collision treguency 3D: $\frac{1}{\tau_e} \propto T^{\frac{3}{2}} \xi_F^{-2} \tau^{-\frac{3}{2}}$ Note: is the electron collision trequency and not the scattering rate! In order for electrony to intertere, they must meet again within time tee. The probability of that is $P \sim \int_{\tau}^{\tau_{ee}} \frac{v_{F} \lambda^{2} dt}{(D t)^{\frac{3}{2}}}$ leading to the "WL - like" correction $\Delta O \approx - const + \frac{e^2}{\hbar} \frac{1}{Lee}$ (3D) $\Delta \sigma \approx -2 \frac{e^2}{\hbar} \ln \frac{Lee}{\ell}$ (2D)